
Monte Carlo path tracing - a global illumination method

Rasmus Hogslätt, rasho692

Abstract

This report covers the background and theory of Monte Carlo path tracers, using radiance as
a means of realistic light transport. It also covers a practical implementation of a Monte Carlo
path tracer, that results in rendered images of diffuse surfaces, ideal reflections and refractions.
Resulting images and render times indicate a strong correlation between the amount of samples
sent per pixel in the camera’s image plane and the quality of the final rendered image. Methods
for improving render times, such as multithreading and bounding volume hierarchies, as well as
methods to improve image quality and simulation of other optical effects are also discussed.

1

Contents

1 Introduction 3

2 Background 3
2.1 Rendering equation . 3
2.2 Radiance and radiosity . 4
2.3 Bidirection reflectance distribution function - BRDF . 4
2.4 Ray properties . 4

2.4.1 Diffuse reflection . 4
2.4.2 Perfect reflection and refraction . 4
2.4.3 Fresnel equation . 5

2.5 Lambert’s cosine law . 6
2.6 Monte Carlo integration . 6
2.7 Monte Carlo path tracing for indirect light . 6
2.8 Ray termination . 6
2.9 Ray-Object intersections . 7

2.9.1 Implicit sphere intersection . 7
2.9.2 Triangle intersection . 7
2.9.3 Other objects . 8

2.10 Light intensity and shadows . 8
2.11 Anti aliasing . 8

3 Implementation 8
3.1 Scene . 8

3.1.1 Direct scene illumination . 8
3.1.2 Indirect scene illumination . 9

3.2 Camera . 9
3.3 Shapes . 9
3.4 Material . 9
3.5 Objects . 9
3.6 Lights . 10
3.7 Ray . 10

4 Results 10

5 Discussion 13
5.1 Samples . 13
5.2 Render times . 13

5.2.1 Multithreading - CPU . 13
5.2.2 Multithreading - GPU . 13
5.2.3 Bounding volume hierarchies and scene structures 13
5.2.4 Machine learning denoising . 13

5.3 Indirect lighting . 14
5.4 Solid angle . 14
5.5 Conclusion . 14

2

1 Introduction

1. Need synthetic scenes
2. Local illumination models cannot resolve shadows and reflections
3. Whitted introduced ray tracing scheme
4. Need methods that can illuminate all types of surfaces –¿ MC

With advances in computer performance over the last decades, computers have been able to do more
and more complex tasks, including rendering of synthetic scenes. These have become more important
and can fulfill various purposes such as rendering movies, visualizing medical data and much more.
Early illumination models provided local lighting of these scenes, such as Phong’s illumination model.
These however, did not account for shadows and refletions, which are proven useful for getting a sense
of depth in a synthetic scene.

In 1980, Turner Whitted published a paper[Whi80] in which he proposed a method to render
photorealistic images that also simulated perfect reflections and refractions. This was a significant
improvement compared to previous common rendering methods, such as Phong’s illumination model
and its variations. It was achieved by letting rays be sent from a virtual camera, through pixels in an
image plane, and into a virtual scene, as illustrated in Figure 1. If the ray would hit a diffuse object
and it was also visible to a light source, the pixel would be given that color, otherwise, the object was
in shadow. If it hit a mirror or transparent object, another ray could be traced into the scene from that
location until a diffuse object was hit. This approach is very similar to how real light transport works,
except that real light travels from a light source to the observer, and not vice versa. This difference
meant that any indirect light from nearby illuminated objects was not accounted for.

Figure 1: Initial ray sent through image plane. When hitting a glass sphere, it perfectly reflects and
refracts and is sent further into the scene.

Whitted had now accounted for shadows and reflective and refractive surfaces, but still, not all
types of surfaces and illuminations were possible to render accurately. For example, ambient lighting,
i.e. light reflected of other surfaces were not accounted for, something which was later solved by
utilizing the Monte Carlo integration technique. This method is commonly called Monte Carlo path
tracing and can illuminate all types of surfaces. An implementation of this will be presented in this
report.

2 Background

This chapter covers fundamental concepts of global illumination and relevant physics needed to un-
derstand and implement a Monte Carlo path tracer.

2.1 Rendering equation

In the field of computer graphics, mathematical and physical advances have resulted in what is com-
monly referred to as the rendering equation. This is an integral equation that is impossible to solve

3

analytically, but if solved, would simulate real illumination very well. Thus, many different methods
have been proposed to approximate this equation as well as possible. A better approximation yields
a better rendering, and tricky parts of the equation can be left out if deemed to complex for a given
application. The rendering equation is commonly written as

Lo(X, ω̂o) = Le(X, ω̂o) +

∫
S2

Li(X, ω̂i)fX(ω̂i, ω̂o)|ω̂i · n̂|dω̂i (1)

where X is a given point on a surface, ω̂o is the outgoing light direction, ω̂i the incoming light direction
and n̂ the surface normal at point X integrated over all possible incoming light directions. The Le-term
indicates emissive objects and light sources.

2.2 Radiance and radiosity

In order to approximate the rendering equation, a representation of light has to be introduced. One
such representation is radiosity, which means that radiance at a surface can also be computed. Radiance
is the radiosity received, emitted, transmitted or reflected at any surface in the scene per solid angle
per unit projected area. Radiosity is the emitted flux divided by the area of the emitting object. Thus,
a light with a small surface area yields a higher radiosity than one with a larger area, when the flux of
both light sources are equal. Each light source would thus have flux given in the unit of Watts, and a
shape that has an area.

2.3 Bidirection reflectance distribution function - BRDF

The fX part of the rendering equation 1 represents how a surface is locally illuminated and is often
called the bidirection reflectance distribution function or BRDF. The BRDF is a probability distribu-
tion function, describing the probability that an incoming ray scatters in a specific random direction
within the hemisphere above the surface. It takes the incoming and outgoing light directions, which
are parameterized to an azimuth and inclination angle. Thus, it is reduced to a function of four
variables[RM12].

2.4 Ray properties

As seen in Figure 1, a ray has an origin and an end position. A ray can thus be represented by a
starting point and an end point, which means that ray direction can be deduced by

rayd = (raye − rayo) (2)

where raye is the ray’s endpoint and rayo is its origin. As they are also used to represent light
transport, they will also carry radiance and importance.

2.4.1 Diffuse reflection

Diffuse surfaces store a color, a reflectance factor and are assumed to only receive light from above.
Thus, the BRDF for diffuse surfaces simplifies to

fX(ω̂i, ω̂o) =
ρ

π
(3)

where ρ is the reflectance of the surface, and π is a normalization factor for the hemisphere above the
surface.

2.4.2 Perfect reflection and refraction

Perfect reflections and refractions obey the law of conservation of energy. Thus, the radiance of a
incoming ray must be equal to the sum of the radiance of the reflected and refracted rays. So a ray
hitting a perfect mirror result in a reflected ray with the same radiance.

The direction of the a perfect reflection is calculated as

R = I − 2(N · I)N (4)

4

Figure 2: Incoming ray I reflects of a perfect mirror, about the normal N , resulting in outgoing ray
R.

where N is the normal of the intersected surface, I is the incoming ray’s direction and R is the new
ray’s direction, as seen in Figure 2.

The refracted ray’s direction is derived from Snell’s law [Fle21]

sin θ1
sin θ2

=
n2

n1
(5)

where θ1 is angle between normal N and incoming ray I in Figure 2. θ2 is the refracted ray’s direction,
and is what is computed. It is the angle between the inverted normal N and the refracted ray’s
direction. n1 and n2 and the indices of refraction of the two mediums that the ray is being refracted
through.

An example ray path through a transparent sphere is shown in Figure 3.
For refractions, total internal reflecton also had to be computed. If the incoming angle θ was greater

than the critical angle θcritical given by equation 6

θcritical = arcsin
n1

n2
, n1 < n2 (6)

where n1 and n2 were the indices of refraction of the mediums, there would not be any refraction.

2.4.3 Fresnel equation

The law of conservation of energy means that both the reflected and refracted rays can not have
an importance of one, despite being perfectly reflected and refracted. They obey the fresnel equa-
tion, which describes the importance of the rays depending on the angle of incidence. This equa-
tion requires a significant amount of computational power. Thus, an approximation, called Schlick’s
approximation[Maj21] is commonly used.

R(θ) = R0 + (1−R0)(1− cos θ)5 (7)

where

R0 = (
n1 − n2

n1 + n2
)2 (8)

and θ is the incident ray’s direction relative to the surfaces normal, and n1 and n2 and the indicies of
refraction. R(θ) is a coefficient for the importance of the reflected ray. The refracted ray’s importance
is given by subtracting R(θ) from one. This equation is an approximation, but is faster to compute
and still yields okay results.

5

Figure 3: Incoming ray I reflects of a perfect mirror, about the normal N , resulting in outgoing ray
R.

2.5 Lambert’s cosine law

In the rendering equation, the term |ω̂i · n̂| comes from Lambert’s cosine law which states that the
radiosity at an ideal diffuse surface is given by the cosine term between the incoming light direction
and the surface normal. This means that a ray hitting a surface at a close to perpendicular angle,
will have a lesser contribution to the surface’s illumination than one hitting the surface parallel to the
surface’s normal. Due to the conservation of energy, any negative values are set to zero.

2.6 Monte Carlo integration

The integral part of the rendering equation is the trickiest part to compute. Computers can not
solve integral equations analytically, as their memory and computational power is finite. Therefore,
methods of approximating integrals exist, and one such method is the Monte Carlo integration method.
It approximates integrals by averaging the sum of randomly chosen samples. The more samples, the
more likely the result is going to converge to its analytical solution.

2.7 Monte Carlo path tracing for indirect light

The integral in the rendering can be approximated by using the Monte Carlo integration method. When
a ray hits a diffuse surface, by letting it randomly reflect within the hemisphere above the surface, and
normalize its importance by accounting for the surface’s BRDF, the integral can be approximated.
Furthermore, sending more rays through each pixel in the image plane would make the approximation
of the integral converge to its actual value, but would increase the computational cost.

2.8 Ray termination

Russian roulette is a common method to determine when a ray should be terminated, which is needed
to avoid spawning an infinite amount of rays. Given a probability p, it determines whether a ray
should be reflected or not. For a mirror, the probability of spawning another ray would always be one,
but for a diffuse surface, this probability would be given by a randomly generated azimuth angle in
the hemisphere above the surface. If another ray is spawned, its importance would be scaled by the
factor 1

p to compensate for errors.

6

2.9 Ray-Object intersections

Rays must be able to intersect objects within the scene. Thus, methods to determine if a ray intersects
each type of object shape must be implemented. If an intersection is found, the intersection point is
given by

x(t) = rayo + t · rayd (9)

where x(t) a point along the ray and t is the distance to that point. However, intersection computations
can be terminated early if culling is assumed. Thus, computing the dot product of the objects normal
n and the ray’s direction rayd means that any results greater than zero means that the object should
not be rendered.

2.9.1 Implicit sphere intersection

A sphere can be described in implicit form as

(P − C)2 −R2 = 0 (10)

where P is a point on its surface, C is the origin of the coordinate system and R is the sphere’s radius.
Replacing P with equation 4, yields an equation where t can be solved for according to equation 6.

(rayo + t ∗ rayd)2 −R2 = 0 (11)

The results is two values for t, where the smallest non-negative value is chosen. This is because
a negative value would mean that the intersection point lies behind the ray’s origin, which is not
wanted. Having one negative value means that the ray’s origin was inside the sphere, which is useful
to know for transparent objects.

2.9.2 Triangle intersection

One method for computing triangle intersection is the Möller-Trumbore algorithm. A point on a
triangle’s surface can be represented as

x(u, v) = (1− u− v)v0 + uv1 + uv2 (12)

where x(u, v) is the point on the triangle, v0, v1, V2 are its vertices and u and v are the points coordinates
in the plane.

Substituting with equation 4 and applying Cramer’s [Sta21] rule and computing edges of the triangle
results in equation 8

t =
Q⃗ · e⃗2
P⃗ · e⃗1

(13)

e⃗1 = v⃗1 − v⃗0 (14)

e⃗2 = v⃗2 − v⃗0 (15)

Q⃗ = ⃗(rayo − v0)× e⃗2 (16)

P⃗ = ⃗rayd × e⃗2 (17)

where t is the intersection depth, u and v triangle coordinates given by Cramer’s rule, and e1 and
e2 are two edges of the triangle with a common vertex. Q is a vector orthogonal to e2 and vector
between ray’s origin and the vertex shared by e1 and e2. P is a vector orthogonal to rayd and e2. For
an intersection to occur, u and v must fulfill certain conditions in equation 9.

u ≥ 0 (18)

v ≥ 0 (19)

u+ v ≤ 1 (20)

t ≥ 0 (21)

7

2.9.3 Other objects

Other types of objects such as tetrahedrons, rectangles and cubes can be constructed using triangles.
Thus, intersection with these objects only need to call the intersection routine of the triangle for all
triangles making up the object and determine which, if any, intersection is the closest.

2.10 Light intensity and shadows

In the physical world, light sources always have a shape, meaning that they also have an area. Thus,
when a ray hits an object in the scene, a ray is sent randomly towards some point on the light’s
visible surface. If no objects were intersected between the casted ray and the light source, the area
is illuminated and its intensity is scaled according to the inverse square law[Bro14]. This means that
the intensity drops of as the distance between the light source and object increases. If an object was
intersected inbetween, then the ray was in shadow, and no intensity was calculated. Sending rays from
the object to a random point on the light source yields soft shadows. If an object is only partially in
shadow, this will then be depicted in the rendering.

2.11 Anti aliasing

In path tracing, several rays are sent through each pixel and the resulting color is averaged. This
improves the result, but some aliasing can still appear. In order to minimize aliasing, sending the rays
at different points through each pixel reduces these artifacts. Thus, generating rays is typically done
by randomly sampling each pixel in the image plane according to Figure 2.

3 Implementation

This section explains how the theory in the background was used to implement a Monte Carlo path
tracer. The code for the project was written in C++ 17 and rendered to an OpenGL texture, which
was then exported to a PNG file. A graphical user interface for easy scene manipulation was also
added using ImGui.

3.1 Scene

The virtual scene was constructed as a hexagonal room. The walls and roof were made of rectangles,
and the room was then filled with spheres and tetrahedrons. The walls were given diffuse materials
and the spheres diffuse, mirror or glass materials. There were two tetrahedron in the scene, one mirror,
and one diffuse. Three square area lights were added by the roof and a camera was positioned in the
back of the room, at a slight offset to the right with a 55 degree field of view.

3.1.1 Direct scene illumination

The scene was directly illuminated by the three light sources in the room. If a ray hit a light source
before anything else, it would terminate and the ray was given the radiosity of the light. If it hit a
diffuse surface, shadow rays were sent towards all light sources and if a diffuse object was positioned
along the shadow ray, the ray would not contribute to the final color. For mirrors and transparent
objects, reflections and refractions were calculated and the new rays were traced. The reflected light
off of diffuse surface was calculated as

θr =

N∑
i=1

max(α · β · θi, 0)
||shadowRayi||2 ·N

(22)

α = − ˆdirshadow · ˆnormallight (23)

β = ˆdirshadow · ˆnormalobject (24)

where θr is the reflected intensity at the object and N is the number of lights. If the dot product is
negative, it is set to zero as to adhere to the law of conservation of energy.

8

3.1.2 Indirect scene illumination

When a ray hit a diffuse object, besides computing direct lighting, russian roulette on the azimuth
angle would determine whether to send another ray into the scene. The radiance of this ray would
then be added to the previous ray, and thus cause indirect lighting from other objects to occur. The
indirect lighting was calculated using

Ltotal = LcurrentRay +
∑ LchildRay ·WchildRay

WcurrentRay
(25)

where Ltotal is the total radiance, LcurrentRay is the radiance given by the direct lighting at the current
ray, WcurrentRay is the importance of the current ray. LchildRay and WchildRay are the corresponding
values for the current ray’s child ray.

3.2 Camera

The camera implemented was a perspective camera with a property to vary the horizontal field of
view, or FoV. From the horizontal FoV, the vertical FoV was computed using 26

FoVV ertical =
height

width
· FoVHorizontal (26)

and the points in the image plane could then be computed using equation 27 and 28

x =
2 · u− width

width
· tanFoVHorizontal (27)

y =
2 · v − height

height
· tanFoVV ertical (28)

where u and v are the pixel coordinates as integers and the z-component is set to negative one relative
to the camera. This means that a ray can constructed, starting from the origin of the camera with
direction towards the coordinates in the image plane. Using equations 27 and 28, a random offset was
calculated and scaled according to the size of a pixel. This allowed for introducing anti-aliasing, as
described in previous section.

3.3 Shapes

The abstract base class Shape was implemented with pure virtual functions to access information such
as normals and positions and most importantly, a function to check if a ray intersected it. Derived
classes for implicit spheres and triangles were then implemented. Triangles would then be further
derived into rectangles and tetrahedrons.
As the intersection calculations were executed on a computer with floating point precision, a small
bias was added to ray’s origin in the direction of the normal. Thus, a ray that intersected a surface
would not send a ray that intersected with that point the surface again. For refractive objects, a check
was done to see whether the ray started from within the object or not. If so, the bias had to be added
towards the inverted normal.

3.4 Material

Another base class called Material was implemented which was derived diffuse surfaces, mirrors and
transparent objects. Each material was given a function to get the fX in the rendering equation 1.
For diffuse surfaces, this returned ρ

π where ρ was the material’s reflectance. Mirrors and transparent
object were assumed to be perfectly reflecting and refracting, and would thus not utilize this function.

3.5 Objects

Objects was the base class later added to the scene. An object was given a pointer to a shape and a
material. Thus, various types of objects could be added to the same scene vector, which allowed easy
manipulation of the scene.

9

3.6 Lights

Similar to the Object class, the Light class also had a pointer to a shape, and also a value for flux and
a function for getting its radiosity.

3.7 Ray

The was constructed using a vectors that stored its origin, end point, radiance and importance. From
the origin and end point, its direction could be derived. It also stored pointers to its parent ray and
child ray. The first ray was constructed by the camera with origin set to the camera’s origin, and
the end point set to a point in the image plane. The ray would be traced into the scene and be
terminated by russian roulette on a diffuse surface or when nothing was intersected. However, the
latter never occured as the scene was a closed room. For intersected object, calculations for radiance
were computed as described in previous sections. If a ray intersected a transparent sphere, the dot
product between the ray’s direction and the object’s surface normal was used to determine whether
the ray started within or outside the sphere.

4 Results

The final implementation of the Monte Carlo path tracer rendered images seen in Figure 4, 5, 6, 7 and
8. All images were rendered at a resolution of 1920x1080 pixels. Figure 4 through 7 were the same
scene rendered with an increasing amount of rays sent per pixel and Table 1 one shows the render time
for each of these renders. Figure 8 is the same scene, with the camera positioned at a corner and with
and added light rendered at 5 samples per pixel to more clearly visualize the indirect lighting of close
surfaces.

Figure 4: Scene rendered at 1 sample per pixel.

Samples per pixel 1 5 10 1000
Render time [seconds] 5 17 40 3940

Table 1: Render times

10

Figure 5: Scene rendered at 5 sample per pixel.

Figure 6: Scene rendered at 10 sample per pixel.

11

Figure 7: Scene rendered at 1000 sample per pixel.

Figure 8: Close up render of a corner. Each face’s color is affected by nearby objects. A light was
added below, causing bright spot on the ceiling.

12

5 Discussion

The implementation of the Monte Carlo path tracer produced images with realistic reflection, refrac-
tions and illuminated diffuse objects directly and indirectly.

5.1 Samples

An obvious conclusion of the resulting images is that an increasing sample rate drastically reduces noise
in the image, but also increase the time it takes to render the image. This is due to the approximated
integral in the rendering equation converging closer to the integrals true value due to the randomness
of Monte Carlo integration. The strong pepper noise when rendering with one sample per pixel is
thus likely due to early ray termination, which means that no more light contribution would be given
to those pixels. When more samples per pixels are used, having one sample returning no radiance,
because of being in shadow, and another sample returning a bright color, would average out and still
result in a colored pixel. So increasing the sample count even more would then cause a lower variance
of the final pixel’s color across different amount of samples.

5.2 Render times

5.2.1 Multithreading - CPU

In table 1, it appears, as discussed above, that render times are drastically increased with increased
sample count. The current implementation of the path tracer is using one processor thread for rendering
the entire image. Thus, only one sample can be computed at any given time. Methods for decreasing
render times, without compromising quality of the rendered image, would be to use several threads
of the processor. For example, the image plane may be divided into a queue of squares covering the
entire image plane. Thus, several squares may be render at once, and when finished, a free thread
could start rendering the next square in the queue.
Using this approach would likely cause a significant decrease of render times, but even then, one might
want to improve this further. An issue with that approach is that one square might be very complex to
compute compared the other squares. A diffuse surface could cover most of the image plane’s window,
whereas only a small section of the image plane’s window may contain a several refractions, that
require more computations. This could mean that one may want to further experiment with dividing
the workload of each thread, to yield the fastest render times.

5.2.2 Multithreading - GPU

Similarly to using several threads of the CPU, one could also utilize the graphics processor of the
computer to render using significantly more cores. A drawback with graphics processors is that they
contain their own memory, and it’s costly to send data back and forth between the CPU and GPU.
Thus, each core of the GPU may not have access to locations of objects in the scene, causing intersection
calculations to be much more tricky to compute. One could work around this issue by using textures,
buffers or even using compute shaders. This would require a massive refactoring of this implementation,
but given time, that would be an interesting comparison to do.

5.2.3 Bounding volume hierarchies and scene structures

Yet another way of decreasing render times would be to utilize bounding volume hierarchies BVH
or similar structures. These allow objects within close proximity to be grouped together, and any
intersection calculations can be made for the entire groups. If a group of objets are not intersected,
that group can be ignored. For a group of five objects, that would mean that checking intersections
five times would be reduced to only once. If a group would intersect though, intersections within that
group could be made. In a nutshell, this means that objects located behind the ray’s origin would
never be checked, which makes sense, as the ray is directed in the opposite way.

5.2.4 Machine learning denoising

With the advances in machine learning, several methods have been introduced to reduce noise in the
image. This allows, low samples rates, whilst still minimizing noise. However, those algorithms, such

13

as NVIDIA’s optix ai-accelerated denoiser[Ail17], only try to predict what color a pixel should be
in pixel-space. Thus, they would most likely break common laws of optics and thereby also break
photorealism. However, the Monte Carlo integration is only an approximation, that converges closer
to the actual integrals value as samples increase. Therefore, neither AI-denoising nor pure Monte Carlo
path tracing actually follows all laws of optics. It would be interesting to compare the photorealism
between the two methods in future studies.

5.3 Indirect lighting

As seen in Figure 8, and perhaps also Figure 4, indirect light is illuminating objects close to other
objects. This is a major improvement over methods such as Whitted’s[Whi80] raytracing method,
which only included direct lighting. The effect is very subtle, but still slightly visible. For example,
the floor in Figure 4 is visibly slightly colored by the cyan wall in the back.

5.4 Solid angle

The method for solid angle in the results are using cosine-weighted solid angles. However, there are
more ways to compute solid angles, that may yield different results. This could be experimented
with further if given time. For example, letting the indirect rays be uniformly distributed within the
hemisphere may cause the indirect light to appear more visible, but may be less accurate. There are
also methods, such as power cosine-weighted sampling of the hemisphere, that may yield even more
accurate results[Ame22].

5.5 Conclusion

Several features are still missing in the Monte Carlo path tracer. For example, it does not account for
polarization of light, depth of field, motion blur or caustics. These are effects that could be further
implemented. A common method for handling caustics is photon mapping. A more advanced camera
may also be implemented to get effects such as depth of field and motion blur.

References

[Ail17] Chakravarty R. Alla Chaitanya (NVIDIA) Anton Kaplanyan (NVIDIA) Christoph
Schied Marco Salvi Aaron Lefohn Derek Nowrouzezahrai (McGill University) Timo
Aila. Interactive reconstruction of monte carlo image sequences using a recur-
rent denoising autoencoder. https://research.nvidia.com/publication/2017-07_

interactive-reconstruction-monte-carlo-image-sequences-using-recurrent, 2017.

[Ame22] Alexander Ameye. Sampling the hemisphere. https://alexanderameye.github.io/notes/
sampling-the-hemisphere/, 2022.

[Bro14] Jeffrey R.S. Brownson. Light decreases with distance. https://www.sciencedirect.com/

topics/engineering/inverse-square-law, 2014.

[Fle21] Hannah Flens. Snell’s law. https://eng.libretexts.org/Bookshelves/Materials_

Science/Supplemental_Modules_(Materials_Science)/Optical_Properties/Snell,
2021.

[Maj21] Zander Majercik. The schlick fresnel approximation. https://link.springer.com/

chapter/10.1007/978-1-4842-7185-8_9, 2021.

[RM12] Carlos Ureña Rosana Montes. An overview of brdf models. https://digibug.ugr.es/

bitstream/handle/10481/19751/rmontes_LSI-2012-001TR.pdf, 2012.

[Sta21] Elizabeth Stapel. Cramer’s rule. https://www.purplemath.com/modules/cramers.htm,
2021.

[Whi80] Turner Whitted. An improved illumination model for shaded display, 1980.

14

https://research.nvidia.com/publication/2017-07_interactive-reconstruction-monte-carlo-image-sequences-using-recurrent
https://research.nvidia.com/publication/2017-07_interactive-reconstruction-monte-carlo-image-sequences-using-recurrent
https://alexanderameye.github.io/notes/sampling-the-hemisphere/
https://alexanderameye.github.io/notes/sampling-the-hemisphere/
https://www.sciencedirect.com/topics/engineering/inverse-square-law
https://www.sciencedirect.com/topics/engineering/inverse-square-law
https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Optical_Properties/Snell
https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Optical_Properties/Snell
https://link.springer.com/chapter/10.1007/978-1-4842-7185-8_9
https://link.springer.com/chapter/10.1007/978-1-4842-7185-8_9
https://digibug.ugr.es/bitstream/handle/10481/19751/rmontes_LSI-2012-001TR.pdf
https://digibug.ugr.es/bitstream/handle/10481/19751/rmontes_LSI-2012-001TR.pdf
https://www.purplemath.com/modules/cramers.htm

	Introduction
	Background
	Rendering equation
	Radiance and radiosity
	Bidirection reflectance distribution function - BRDF
	Ray properties
	Diffuse reflection
	Perfect reflection and refraction
	Fresnel equation

	Lambert's cosine law
	Monte Carlo integration
	Monte Carlo path tracing for indirect light
	Ray termination
	Ray-Object intersections
	Implicit sphere intersection
	Triangle intersection
	Other objects

	Light intensity and shadows
	Anti aliasing

	Implementation
	Scene
	Direct scene illumination
	Indirect scene illumination

	Camera
	Shapes
	Material
	Objects
	Lights
	Ray

	Results
	Discussion
	Samples
	Render times
	Multithreading - CPU
	Multithreading - GPU
	Bounding volume hierarchies and scene structures
	Machine learning denoising

	Indirect lighting
	Solid angle
	Conclusion

