
TNM114 - Artificial Intelligence for Interactive Media
October 17, 2023

Genetic training of neural networks in Flappy Bird
Rasmus Hogslätt1

Abstract
This report delves into the application of Genetic Algorithms, GAs, for training Neural Networks, NNs, in a
dynamic environment, exemplified by the game Flappy Bird, where traditional gradient-based training methods
are not viable. The exploration is aimed at understanding how GAs can optimize NNs and how a few different
parameters influence the performance of this approach. The implementation is carried out in Rust, utilizing the
Bevy game engine for game creation, and devises a structured approach to evolving NNs, with the population
of birds being evaluated, selected, crossed over, and mutated across generations to improve gameplay
performance. Two methods of generating new populations, named average and thirds, are introduced alongside
a decreasing mutation rate strategy to balance exploration and exploitation over time. The analysis of varying
mutation rates and neural network architectures under both generation methods reveals that the ’thirds’ method,
especially with a mutation rate of 0.125 and a [4, 3, 3, 2, 1] architecture, achieves superior performance,
hinting at a promising trade-off between exploration and exploitation and a well-suited architecture complexity.
Conversely, the ’average’ method exhibited lower average performance, indicating potential convergence issues
or the risk of being trapped in local minima. While the current implementation demonstrates encouraging
results, further exploration of other parameters such as population size, more nuanced generation methods and
additional environment inputs is suggested as further exploration that could potentially yield improvements in
performance when training neural networks using genetic algorithms.

Source code: https://github.com/RasmusHogslatt/GeneticFlappyBird

Authors
1Media Technology Student at Linköping University, rasho692@student.liu.se

Keywords: Neural Network — Genetic Algorithm — Rust

Contents

1 Introduction 1

2 Theory 2

2.1 Neural Networks . 2
2.2 Genetic Learning for Neural Networks 2

3 Method 2

3.1 Making a neural network 2
3.2 Making a game . 3
3.3 Fitness . 3
3.4 Selection . 3
3.5 Crossover . 3
3.6 Mutation . 3
3.7 New generation methods 3

4 Result 3

5 Discussion 4

6 Conclusion 4

References 4

1. Introduction
Neural networks have become an important part of today’s
everyday life and is increasingly encountered in various types
of applications. In order for neural networks to be useful,
they need to be trained. This is typically done by utilizing
gradient descent and back-propagation, requiring knowledge
of the cost function’s gradient[Kostadinov(2019.)]. However,
in dynamic and non-deterministic environments, for example
the game Flappy bird, outcomes of an action are not always
known. Thus, the gradient function is hard or difficult to ob-
tain, meaning that backpropagation is not always trivial to
implement. Reinforcement learning methods, such as genetic
algorithms, are often employed rather than backpropagation
methods. This is further discussed in the section Advantages
of Reinforcement learning by Bajaj in his article What is
reinforcement learning[Bajaj(2023.)]. This report aims to im-
plement and explore how genetic algorithms can be utilized
to train neural networks, and also explore how various pa-
rameters can impact the performance of such implementation.
Further, the implementation will be done for the game Flappy
bird.

Genetic training of neural networks in Flappy Bird — 2/4

2. Theory

2.1 Neural Networks
Neural Networks are computing systems inspired by the hu-
man brain’s interconnected neuron structure. They comprise
layers of nodes or ”neurons,” with each node in a layer con-
nected to all nodes in the preceding and succeeding layers.
These connections have associated weights, which are ad-
justed during training to minimize the error between the net-
work’s output and the desired output.

• Architecture:

– Input Layer: Receives the raw data and passes it
onto the subsequent layers.

– Hidden Layers: Intermediate layers where the
data is processed through weighted connections
and activation functions.

– Output Layer: Delivers the final output of the
network.

• Training:

– Forward Propagation: Input data is passed through
the network, layer by layer, until it reaches the out-
put layer.

– Error Calculation: The error is calculated by
comparing the network’s output with the desired
output.

– Backpropagation: The error is then propagated
back through the network, and the weights are
adjusted to minimize the error.

– Epochs: This process is repeated for a specified
number of iterations or until a desired level of
accuracy is achieved.

• Activation Functions: Functions like the sigmoid or
rectified linear unit (ReLU) that introduce non-linear
properties to the system, enabling the network to learn
from the error.

2.2 Genetic Learning for Neural Networks
Genetic Algorithms, GAs, are optimization algorithms based
on the process of natural selection and where proposed in
1989 by a group of researchers at Stanford and California
University of Technology[Miller and Hegde.(1989.)]. They
can be used to train neural networks, particularly when the
problem domain is complex, the data is noisy, or the error
landscape is non-convex and full of local minima. In this
case, they can be used to replace the backward propagation in
traditional training of neural networks.

• Initialization: A population of neural networks is ini-
tialized with random weights.

• Fitness Evaluation: Each network’s fitness is evaluated
based on a predefined criterion, often the performance
on a task.

• Selection: Networks are selected for reproduction (crossover
and mutation) based on their fitness, with fitter networks
having a higher chance of being selected.

• Crossover: Pairs of networks are combined to create
offspring networks, inheriting characteristics (weights)
from both parent networks.

• Mutation: Some weights in the offspring networks are
randomly altered to introduce variability.

• New Generation: The offspring networks form a new
generation, and the process is repeated until a stopping
criterion is met.

Genetic learning can be particularly useful when tradi-
tional training methods like gradient descent are infeasible or
ineffective. By evolving networks over several generations,
GAs facilitate exploration of wide search spaces which can
lead to the discovery optimal weight configurations. They are
also able to run in parallel, allowing for faster training than
training one agent at a time. Moreover, GAs do not require
the cost function to be differentiable, a requisite for methods
like backpropagation, making them applicable to a broader
range of problems.

3. Method
The implementation of the project was done using the Rust
programming language.

3.1 Making a neural network
As described in section 2.1, neural networks consist of layers,
with some amount of nodes, each consisting of weights and
biases. Therefore, the structure of the neural network was
achieved by creating a vector of layers, each layer holding a
vector of biases and a matrix of weights.

Each layer Li in the neural network is represented as

Li = {Wi,bi} (1)

where,

• Wi is the weights matrix for layer Li, with each element
Wi j representing the weight from the jth neuron in layer
Li−1 to the ith neuron in layer Li.

• bi is the bias vector for layer Li, with each element bik
representing the bias of the kth neuron in layer Li.

Further, a forward function was implemented according
to the equation

Zi =WiAi−1 +bi

Ai = g(Zi)

where,

Genetic training of neural networks in Flappy Bird — 3/4

• Zi is the pre-activation value at layer Li.

• Ai is the post-activation value at layer Li, obtained by
applying the activation function g(·) to Zi. The activa-
tion function implemented was the sigmoid function.

• A0 is the input to the neural network.

This structure and forward propagation function facili-
tates the training of the neural network after incorporating
the genetic algorithm, enabling the optimization of weights
and biases to minimize the loss function and make accurate
predictions on unseen data.

3.2 Making a game
Making the game was done using the Bevy game engine in
Rust. It uses an entity-component-system model, ECS. A bird
was defined by a body, in this case a red square, and a neural
network. The bird was affected by gravity and its only action
was to ”flap” its wings, represented by an upwards force.

Pipes, the obstacles in the game, were made from two
squares with a gap between and moving at fixed velocity from
right to left of the screen.

Further, a system was implemented that continuously fed
each bird information about its state in the environment. This
became the input to the neural network and were given by

1. Horizontal distance to nearest pipe

2. Vertical distance to the center of the gap of nearest pipe

3. The bird’s vertical position

4. The bird’s vertical velocity

which meant that the neural network architecture had to have
4 input neurons and one output neuron.

3.3 Fitness
Each bird was also given a fitness score, which was calculated
as the time the bird had been alive. Each bird also had a score,
increased by 1 for each pipe it managed to pass. However,
the score was merely for ease of visualizing performance, and
not to determine the fitness of the birds, despite their strong
correlation.

3.4 Selection
Each generation assumed a population size of at least two
birds. A pair of birds, best birds, were kept around to keep
track of the best performing birds out of all generations. The
last two birds of each generation were those that were the
fittest for the given generation. The fitness of these birds were
checked against the best birds fitness. If the fitness of the
current generation exceeded that of the fitness values in best
birds, the neural networks and current fitness values were used
to update best birds.

3.5 Crossover
The crossover algorithm, called when spawning a new popu-
lation, was implemented as the average weights and biases of
the two fittest birds’ neural networks.

3.6 Mutation
The mutation of a bird was reliant on two parameters, prob-
ability and rate. The propability was the propability that the
bird should mutate or not, whereas the rate was used to gener-
ate a random value in range [−rate,rate] which was added to
the weights and biases.

Initially, the rate was set to 1.0, producing large mutations.
Every 10th generation, it was multiplied by 0.9, resulting in
a decreasing rate over time. Thus, exploration was favored
initially and exploitation was more favored in later parts of
the training.

3.7 New generation methods
Two algorithms for generating a new population were imple-
mented. These were the average and thirds methods.

The average method simply averaged the weights and
biases of the two best neural networks for each bird in the
new population. Essentially using the crossover method previ-
ously described. This was followed by applying the mutation
schema to each bird.

The thirds method instead divided the new population into
thirds. One third was cloned from the best bird and another
third from the second best bird. These birds were then mutated
according the the mutation schema described. The last third
was generated entirely randomly.

4. Result
Figure 1 depicts the game during training of a population of
400 birds.

Figure 1. Screenshot of the implemented game during
training.

Further, for a population of 50 birds, eight tests were
ran with varying mutation probabilities and neural network
architectures. The tests ran until no further significant im-
provement was seen. This resulted in the tests running for
approximately 4 hours each. The score of each trained gener-
ation and model is shown in Figure 2 and a summary of the
models’ performances is seen in table 1.

Genetic training of neural networks in Flappy Bird — 4/4

Figure 2. Scores over several generation with varying
parameters.

Table 1. Key metrics of performance of various parameter
configurations.

Method Probability NN Architecture Max Score
Average 0.125 [4, 3, 1] 8
Average 0.125 [4, 3, 3, 2, 1] 47
Average 1.0 [4, 3, 3, 2, 1] 5
Average 1.0 [4, 3, 1] 131
Thirds 0.125 [4, 3, 1] 135
Thirds 0.125 [4, 3, 3, 2, 1] 553
Thirds 1.0 [4, 3, 3, 2, 1] 88
Thirds 1.0 [4, 3, 1] 54

5. Discussion
The training of neural networks using genetic algorithms to
play the Flappy Bird game yielded varying results, dependent
on the mutation rate, method of generating new generations
and neural network architecture.

The thirds method, especially with a mutation probability
of 0.125 and [4, 3, 3, 2, 1] architecture, achieved the most
impressive performance with a score of 553. This suggests a
balanced exploration and exploitation trade-off and an archi-
tecture complexity that was rather well suited to capture the
necessary patterns for playing the game well. The decreasing
mutation rate over generations contributed to the stabilization
of learning, initially promoting exploration and later focusing
on fine-tuning the promising candidates, commonly referred
to as exploitation.

Contrarily, the average method, particularly with a 1.0
mutation probability and [4, 3, 1] architecture, exhibited a
lower average performance, indicating potential issues with
convergence or the possibility of being trapped in local min-
ima. This was especially noticeable in cases where no birds
would survive past the first pipe. This was likely due to no
the fact that the average of two unfit birds typically result in
another unfit bird. This could possibly be resolved by only
starting applying the average crossover method if the fittest
bird passed the first pipe.

Further, higher mutation rates yielded more exploration,
minimizing the risk of getting stuck in local minima. They

could, however, introduce an unnecessary amount of explo-
ration, causing the algorithm to take longer to achieve good
results. Thus, a trade-off between exploration and exploitation
is to be made. The current approach of taking 90% of pre-
vious mutation rate every 10 generations seemed to achieve
good results, but could perhaps be further tuned to achieve
faster convergence to a good bird, whilst also avoiding local
minima.

6. Conclusion
The implementation shows that genetic algorithms can be
a viable method of training neural networks for tasks like
game playing, where traditional training methods might face
challenges. In particular, they proved to be useful for dynamic
environments, where gradient functions are unknown.

Further, the choice of parameters and how each new pop-
ulation is generated was shown to greatly affect the time it
takes to train a well performing network. Many other parame-
ters could have been explored further, such as the population
size, neural network architecture, more nuanced generation
methods, other environment inputs etc.

References
[Kostadinov(2019.)] Simeon Kostadinov. Understanding back-

propagation algorithm. Towards Data Science, 2019.
[Bajaj(2023.)] Prateek Bajaj. What is reinforcement learning,

2023. URL https://www.geeksforgeeks.org/
what-is-reinforcement-learning/.

[Miller and Hegde.(1989.)] Peter M. Todd Miller, Geoffrey F. and
Shailesh U. Hegde. Designing neural networks using
genetic algorithms. ICGA. Vol. 89., 1989.

https://www.geeksforgeeks.org/what-is-reinforcement-learning/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/

	Introduction
	Theory
	Neural Networks
	Genetic Learning for Neural Networks

	Method
	Making a neural network
	Making a game
	Fitness
	Selection
	Crossover
	Mutation
	New generation methods

	Result
	Discussion
	Conclusion
	References

