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Abstract

This report explores the implementation and
evaluation of the Denoising Convolutional
Neural Networks (DnCNN) model for image
denoising, compared to traditional Gaussian
kernel-based denoising methods. DnCNN uti-
lizes residual learning and batch normaliza-
tion to predict and subtract residual noise from
images. The model was trained on a gener-
ated dataset of clean and noisy image pairs
using a CPU, due to resource constraints, lim-
iting the scope of training. Evaluation utilized
standard denoising metrics on test images sub-
jected to Gaussian and Salt and Pepper noise.
The results show the trained DnCNN models,
performed comparably to traditional methods.
The findings indicate DnNCNN’s potential for su-
perior denoising performance with optimized
training and suggest further exploration with
improved computational resources and differ-
ent architectures for improved denoising per-
formance.

1 Introduction

Image denoising is a fundamental task in im-
age processing, which aims to remove noise
from images while preserving the underlying
image structure. Image noise can be caused by
a variety of factors, such as sensor noise, quanti-
zation noise, and transmission noise. Gaussian

noise is one of the most common types of im-
age noise, which can be modeled as a random
variable with a normal distribution.

Traditional denoising methods are usually
utilizing Gaussian kernels and convolutional
operations. They average the values in the
area of the kernel, which produces a smoothing
of the image. This smoothing effect removes
noise, but does so by introducing blur. Meth-
ods exist where adaptive kernel sizes can be
applied to different part of the image based on
regional differences noise levels. This requires
a notion of measuring what part of the image
is more noisy than another, which may not al-
ways be a trivial task.

Deep learning-based denoising methods
have recently emerged as a new class of de-
noising algorithms that have achieved state-
of-the-art results. Many deep learning-based
models have drawbacks such as being effective
only on a given noise level or certain types of
images. A new method, DnCNN (Deep Convo-
lutional Neural Network for Image Denoising),
was proposed by a group of reasearchers in
2016 [1] which became one of the most popu-
lar deep learning-based denoising algorithms.
DnCNN models are trained on a large dataset
of noisy and clean images, where the noise lev-
els differ. They then learn to denoise images by
predicting the residual noise between the noisy
image and the clean image, even for random
levels of noise which previous deep-learning
based models did not.



This report aims to implement the proposed
DnCNN model and compare its performance
to more traditional methods of denoising. Due
to limited computational resources, only a few
smaller models are trained and evaluated.

2 Background

The DnCNN model is a deep learning archi-
tecture designed explicitly for image denois-
ing. Its fundamental difference to other deep
learning based models is the utilization of resid-
ual learning and batch normalization. Also,
DnCNN uses convolutional neural networks
(CNN), which are suitable for image data due
to their abitiliy to preserve spatial relationships
within the image.

2.1 Convolutional Neural Networks

Convolutional neural networks, CNNs, con-
sist of multiple layers, each designed to extract
different features from the input image. Con-
volutional layers, employ filters or kernels that
slide over the image, performing element-wise
multiplication followed by summation to gen-
erate a feature map. The convolution operation
can be represented by the equation:

Fij =323 immy(j—n) - Kmn (1)
m n

where F is the feature map, I is the input image,
and K is the kernel.

These layers are adept at capturing local pat-
terns and spatial hierarchies in images, making
them instrumental for tasks like image denois-
ing. The same convolutional operations are em-
ployed in traditional denoising methods, but
the size of the filter or kernel is usually fixed.
The DnCNN model, after being trained, learns
to adapt the size of the filter or kernel in order
to minimize unnecessary distortion.

2.2 Residual Learning

One of the innovative aspects of DnCNN is
its utilization of residual learning. Instead of
denoising the image directly, DnCNN seeks

to predict the residual noise which, when sub-
tracted from the noisy image, results in a de-
noised image. This approach simplifies the
learning process, as learning a residual map is
often easier than learning the denoised image
outright. The residual learning can be formu-
lated as:

D(x) = x — F(x) )

where D(x) is the denoised image, x is the
noisy image, and F(x) is the residual noise
learned by the network.

2.3 Training DnCNN

Training a DnCNN model requires a dataset
comprising pairs of clean and noisy images.
The model learns to minimize the difference
between the predicted residual noise and the
actual noise during training. A loss function,
typically Mean Squared Error (MSE), gauges
the difference between the predicted and actual
noise, guiding the optimization process to tune
the model parameters for better performance.
The MSE loss function is given by:

N

MSE = % i:Zl(F(xi) — (xi—yi)?

®)

where N is the total number of training sam-
ples, x; is the noisy image, y; is the clean image,
and F represents the network. In Figure ?? is
an example of the subset of the training to train
the model implemented in this report.

2.4 Batch Normalization and ReLU
Activation

DnCNN incorporates Batch Normalization af-
ter each convolutional layer, except for the last
one. Each layer will thus be normalized to a
range, resulting in cheaper, faster and more
accurate training. The Rectified Linear Unit
(ReLU) activation function is employed to in-
troduce non-linearity into the model, aiding in
learning complex patterns with faster training
than many other activation function, such as
the sigmoid function.



Figure 1: Upper row: Clean images. Lower
row: Gaussian noise added with random
standard deviation.

2.5 Performance Evaluation

Performance evaluation is crucial to ascertain
the efficacy of DnCNN in comparison to tra-
ditional denoising methods. Common metrics
like Peak Signal-to-Noise Ratio (PSNR), Mean
Square Error (MSE) and Mean Absolute Error
(MAE) are employed to quantify the denoising
performance. PSNR is defined as:

(4)

PSNR = 20 - log;, ( MAXy )

MSE

where MAX; is the maximum possible pixel
value of the image.

3 Results

Images in Figure 5 through 6 show of three
models on two different test images with var-
ious standard deviations. They are compared
to the best PSNR given by the traditional Gaus-
sian kernel denoising method with kernel sizes
3x3, 5x5, 7x7, 9x9 and 11x11. Similar compar-
isons was performed in Figure 7 where salt and
pepper noise was added to the test image. The
models were still trained on Gaussian noise.
Further, the three models tested were trained
on CPU, with validation loss given in Figures
2 through 4 respectively. Images have been
re-scaled and interpolated to fit the format of

a report, thus, they may not be accurately de-
picted.
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Figure 2: Validation loss during training

model with training images of size 64x64
pixels for 100 epochs.
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Figure 3: Validation loss during train-
ing model with training images of size
128x128 pixels for 40 epochs.

4 Discussion

This section provides an analysis of the re-
sults obtained from the experiments conducted,
and compares the performance of the DnCNN
model with traditional denoising methods. The
key points discussed in this section include the
effectiveness of deep learning-based denoising,
computational requirements, and potential ar-
eas for further research.
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Figure 4: Validation loss during train-
ing model with training images of size
256x256 pixels for 40 epochs.

4.1 Performance Comparison

The results shown in Figures 5 and 6 indicate
that this DnCNN model performs similar met-
rics as regular Gaussian kernels applied to the
test image. Although the metrics are overall
rather similar, the DnCNN model typically re-
tained more of the details, not blurring the im-
age as Gaussian kernels do.

As seen in Figure 7, the DnCNN model per-
formed slightly better than the Gaussian ker-
nel method, despite being trained on Gaussian
noise. The difference was not significant, but
the difference may indicate that a more well
trained model could outperform traditional
methods on various different types of noise.

4.2 Computational Resources

The limitation of computational resources im-
pacted the scope of this study significantly.
Training larger models or training for more
epochs could potentially improve the denois-
ing performance of DnCNN further. Moreover,
the training was carried out on a CPU, which
is considerably slower compared to a GPU. Fu-
ture work with better computational resources
could explore these aspects in depth.

4.3 Model Training and Evaluation

The validation loss plots shown in Figures 2
through 4 provide insight into the training pro-

Figure 5: Results for three models trained
on 64, 128 and 256 images respectively.
Test images have Gaussian noise with stan-
dard deviation of 20.

cess. The validation loss tends to decrease with
the number of epochs, although the 256x256
model’s validation loss, seen in Figure 4, occa-
sionally spiked, indicating that the training was
not optimal. This might be due to overfitting
or inoptimal choice of model parameters.

4.4 Adaptibility

In order to fairly compare the DnCNN model
to regular Gaussian kernel convolution, sev-
eral kernel sizes were tested and only the best
was compared to the DnCNN model. This may
have given an unfair advantage, not highlight-
ing the adaptibility of the DnCNN model. It
did provide similar results regardless of the



Figure 6: Results for three models trained
on 64, 128 and 256 images respectively.
Test images have Gaussian noise with stan-
dard deviation of 50.

Figure 7: The model trained on 256x256 im-
ages compared to Gaussian convolutional
method on Salt and Pepper noise.

standard deviation of the Gaussian noise that
was added, thus reducing runtime costs com-
pared to traditional methods that usually need
to, in addition to the convolutional operations,
determine the best kernel size for various re-
gions in the image.

4.5 Future Work

Future work could involve experimenting with
different architectures, loss functions, or train-
ing parameters to improve the denoising per-
formance. Additionally, applying DnCNN
to other types of noise beyond Gaussian and
Salt and Pepper noise could be valuable. The
DnCNN model was proposed in the paper [1]
in 2016. Thus, how this model stands in com-
parison to any more recent models may also be
explored further.

5 Conclusion

DnCNN is a powerful deep learning-based de-
noising algorithm that can outperform tradi-
tional denoising methods based on Gaussian
kernels on a variety of image datasets. DnCNN
is able to remove noise while preserving image
details, making it a valuable tool for a wide
range of image processing applications. Un-
fortunately, only being able to train the model
on a CPU limited the achieved performance of
the trained models. It is possible that models
trained for longer or on larger datasets would
have achieved better performance.
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